翻訳と辞書
Words near each other
・ Z Corporation
・ Z curve
・ Z Densetsu (Owarinaki Kakumei)
・ Z Electric Vehicle
・ Z Energy
・ Z Experimental Station
・ Z Film Festival
・ Z flag
・ Z for Zachariah
・ Z for Zachariah (film)
・ Z Force
・ Z Force (Action Force)
・ Z Force (Bangladesh)
・ Z Force (Burma)
・ Z Foundation
Z function
・ Z Gallerie
・ Z gitarą wśród zwierząt
・ Z Gorres
・ Z Grill
・ Z Gundam
・ Z Island
・ Z Jenštejna
・ Z LaLa
・ Z machine
・ Z Mazinger
・ Z movie
・ Z Music Television
・ Z N model
・ Z Nation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Z function : ウィキペディア英語版
Z function
In mathematics, the Z-function is a function used for studying the
Riemann zeta-function along the critical line where the real part of the
argument is one-half.
It is also called the Riemann-Siegel Z-function,
the Riemann-Siegel zeta-function,
the Hardy function,
the Hardy Z-function and
the Hardy zeta-function.
It can be defined in terms of the Riemann-Siegel theta-function and the Riemann zeta-function by
:Z(t) = e^ \zeta\left(\frac+it\right).
It follows from the functional equation of the Riemann zeta-function that the Z-function is real for real values of ''t''. It is an even function, and real analytic for real values. It follows from the fact that the Riemann-Siegel theta-function and the Riemann zeta-function are both holomorphic in the critical strip, where the imaginary part of ''t'' is between -1/2 and 1/2, that the Z-function is holomorphic in the critical strip also. Moreover, the real zeros of Z(''t'') are precisely the zeros of the zeta-function along the critical line, and complex zeros in the Z-function critical strip correspond to zeros off the critical line of the Riemann zeta-function in its critical strip.
==The Riemann-Siegel formula==

Calculation of the value of Z(t) for real t, and hence of the zeta-function along the critical line, is greatly expedited by the Riemann–Siegel formula. This formula tells us
:Z(t) = 2 \sum_ n^\cos(\theta(t)-t \log n) +R(t),
where the error term R(t) has a complex asymptotic expression in terms of the function
:\Psi(z) = \frac
and its derivatives. If u=(\frac)^,N=\lfloor u^2 \rfloor and p = u^2 - N then
:R(t) \sim (-1)^
\left( \Psi(p)u^
- \frac\Psi^(p)u^
+ \cdots\right)
where the ellipsis indicates we may continue on to higher and increasingly complex terms.
Other efficient series for Z(t) are known, in particular several using the
incomplete gamma function. If
:Q(a, z) = \frac = \frac \int_z^\infty u^ e^ du
then an especially nice example is
:Z(t) =2 \Re \left(e^
\left(\sum_^\infty
Q\left(\frac,\pi i n^2 \right)
- \frac}
\right)}
\right)\right)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Z function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.